
From OO to FPGA
Fitting Round Objects into Square Hardware?

Based on Stephan Kou and Jens Palsberg paper

but first...
What is FPGA?
(z slajdów Marcina Peczarskiego oraz Szymona
Acedańskiego)

So what's the problem with
FPGA?

Maybe we could use OO language?
but...

JAVA/C++/ect
bad idea

• Dynamic memory allocation
 • memory blocks can not be requested on runtime
• Pointers
 • memory is not continuous space
 • problem with re-assigning pointers
• Function pointers
 • on FPGA function is a black boxed entity with physical connection
between caller and callee (think of virtual methods and virtual tables)
• Recursion
 • for n-deep recursion we would have to synthesis n instances of the
function
 • how would we know how big n can be?

but there is Virgil
"light-weight OO programming language"

• Java/C style syntax
• No dynamic memory allocation
 • memory can be allocated ONLY in constructors
 • two phases: initialization and execution
• Every method is virtual
• Simple objects hierarchy
 • only single inheritance (only parent <-> child relation)
• Recursion and delegates (function pointers)
 • both are present in virgil, but they won't support them :(

What are they doing?
AutoPilot FPGA

• translating Virgil to C-subset
 • without recursion
 • no C-pointers
 • no function pointers
• run AutoPilot to convert C code to VHDL
• let the standard (Xilinx) toolchain takeover from here

A set of classes written in Virgil

Memory layout of A, B and C
Horizontal model (standard one)

• Polymorphism by pointers
casting

• VMT

Memory layout of A, B and C
Vertical uncompressed model

• One table (row) per
class field/method

• Column represents an
instance of the class

• Indexes as pointers

• Memory waste

• VMT will be dealt later

Memory layout of A, B and C
Vertical vs Horizontal model fields accessing

Memory layout of A, B and C
Hybrid compressed model

• No memory wastes

• One row per class
field

• Pointers as series of
integer offsets

• In our case, a pair of
integers

• There is no problem with longer pointers.
Bigger pointer means larger data bus, but
execution time stays the same

Memory layout of A, B and C
Hybrid compressed model

Memory layout of A, B and C
Hybrid compressed model fields accessing

TYPEID
Implementing Virgil's 'instanceof' operator

• Statically assigned unique integer to each class by
visiting class hierarchy in PRE-ORDER
• Invariants

 • subclasses have greater TYPEID
 • superclasses have smaller TYPEID

• Simple type checking

• a instanceof Y <=> Y.TYPEID <= a.TYPEID <= max
({X.TYPEID : X subclass of Y})

Arrays
same problems as with objects

• In Virgil arrays are passed around as references to
actual arrays
• Normally, array referencing would be implement as
pointers to some global variables

 • We cannot use pointers
• So lets group all same typed arrays into one huge
global array

 • We have full information about types during compilation
 • We can implement references to arrays as simple integer
indexes (offsets in global arrays)

Arrays

Virtual methods
no function pointers -> no virtual method tables

• Instead of VMT we use method dispatcher
• Simple switch-case construction on TYPEID

Delegates and recursion

• Not supported but...
• Delegates could be implemented as giant switch-case
on all possible functions
• There are many papers about eliminating recursions,
but this was beyond the scope of the paper
• We can live without them

Optimizations
virtual methods

• Dispatchers are the biggest overhead in such OO design
• Eliminating dispatchers

 • In obvious places (A::foo, B::arg or C::f)
 • By static analysis
{ A a; a.bar(); }
we know that we should invoke A::bar not B::bar

Optimizations
bitwidth

• From FPGA point of view we would like to work on
smallest possible types
• smaller bit-length is always better (not like on CPUs)
• In our case pointer size can be reduced
• widest row for first component is A - 4 columns wide
• second component for B is 2 columns wide

What have they accomplished?

Benchmarks
experimental results

• We evaluate our results using following benchmarks
from well known benchmark suites
• AES - popular modern encryption cipher
• Blowfish - popular modern encryption cipher
• SHA - an implementation of SHA-1 hash function
• Richard's benchmark - simulation of a task-dispatcher component of an
operating system
• Benchmarks were translated from existing C-
implementations to Virgil
• Platform:
• CPU (xeon) - Quad Core e5430 (2.66GHz, 6MB cache, 32GB ram)
• CPU (atom) - Single Core (1.6GHz, 512KB cache, 1GB ram)
• FPGA (confirmed simulation) - 100MHZ

Benchmarks
experimental results

• Each benchmark was executed in following way
1. orginal C/C++ code compiled with GCC on Ubuntu Linux

executed on CPU (xeon)
executed on CPU (atom)

2. orginal C/C++ code compiled using AutoPilot
executed/simulated on FPGA

3. Our virgil code compiled with our compiler to C (both wide and
hybrid versions) then compiled with GCC

executed on CPU (xeon)
executed on CPU (atom)

4. Our virgil code compiled with our compiler to C (both wide and
hybrid versions) then compiled with AutoPilot to FPGA

executed/simulated on FPGA

• Our primary interest is comparison of 1. vs 4.

Benchmarks
experimental results

What's next?

• We clearly see that results are very promising
 • Similiar performances to latest Intel's high-end CPU with
small and relatively cheap units using 40 times less energy

• FPGAs are getting more and more attention
• There is undergoing work with for example

 • JVM processors (JOP)
 • Neural networks (think of this massive parallelism)

